

Helpful Equations

Calculating Required Conductor Size:

11.1 * Amperage Capacity * Loop Distance

Conductor Size =

Loop Voltage Drop

Calculating Allowable Voltage Drop:

11.1 * Amperage Capacity * Loop Distance

Allowable Voltage Drop=

Conductor Size

Calculating Allowable Circuit Amperage Capacity:

Conductor Size * Loop Voltage Drop

Allowable Amperage Capacity =

11.1 * Loop Distance

Calculating Allowable Loop Distance:

Conductor Size * Loop Voltage Drop

Allowable Loop Distance=

11.1 * Amperage Capacity

Legend:

Conductor Size (mm) = Size of power cables being used (Refer to the cable sizing table below) **Voltage Drop (V)** = Change in voltage from batteries to charger Amperage Capacity (A) = The highest amount of amps that will be flowing through the power cables

Loop Distance (ft) = Distance of power cables from batteries to charger (power plant) and back to battery